The Application of Genetic Algorithms to Feature Recognition and Object Counting
نویسندگان
چکیده
1. Introduction Even for the human, visual perception is a complex task, demanding vast resources of prior knowledge and involving the combined computational power of some 10 10 neurons. Yet, in spite of this formidable processing capability, the eye occasionally arrives at erroneous interpretations – as is well-known from the considerable number of optical illusions it is subject to. These illusions are ultimately due to the fact that the eye-brain system takes shortcuts in interpreting visual data, by adopting a hypothesis-based interpretation schema rather than the more obvious 'linear' approach in order to save computation. Quite apart from ambiguities and illusions, visual perception presents serious intrinsic difficulties in many practical situations: take, for example, the needle in the haystack problem, or the robot which has to pick a bracket from a pile of parts. In such cases there is such a welter of lines, curves, holes, edges and other features in the picture that grouping them to form objects is an especially complex matter (again, hypotheses have to be made if efficient means of solving such problems are to be found) [1].
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملThe Application of Numerical Analysis Techniques to Pattern Recognition of Helicopters by Area Method
In this paper, a new method to selecting different viewing angles feature vector is introduced to recognition different types of Helicopters. Feature vector 32 components based on characteristics of the shape, Area and a length to describe a binary two-dimensional image was created, shape feature and length feature not only effective but area features effective and were used. New features vecto...
متن کامل